Application of integrals (examples)

1. Calculate the area of the figure limited with curve $y=-x^{2}+2 x$ and line $y=0$.

Solution:

In these tasks we must first draw the picture and find the point of intersection because they give us borders of integral.
i) $y=-x^{2}+2 x \longrightarrow-x^{2}+2 x=0 \longrightarrow \mathrm{x}^{2} \longrightarrow 0$ and $\mathrm{x}=2$
ii) $y^{`}=-2 \mathrm{x}+2, \mathrm{y}^{`}=0$ for $-2 \mathrm{x}+2=0 \longrightarrow \mathrm{x}=1 \longrightarrow \mathrm{y}=-1^{2}+2=1$, the point $(1,1)$ is maximum.

We need to find this area, and it is clear that the limits of integrals go from 0 to 2 , so:

$$
\mathrm{A}=\int_{0}^{2}\left(-x^{2}+2 x\right) d x=\left.\left(-\frac{x^{3}}{3}+2 \frac{x^{2}}{2}\right)\right|_{0} ^{2}=\left[\left(-\frac{2}{3}^{3}+2^{2}\right)-\left(\frac{0}{3}+0\right)\right]=-\frac{8}{3}+4=\frac{4}{3}
$$

2. Calculate the area of the figure, which is limited with lines: $y=2 x^{2}+1$ and $y=x^{2}+10$

Solution:

Points of intersection of the two curves, we get as the solution of system equations(that will give us the border of integral):

$$
\begin{aligned}
& y=2 x^{2}+1 \\
& y=x^{2}+10
\end{aligned}
$$

$2 x^{2}+1=x^{2}+10$
$x^{2}=9 \quad$ So integral "goes" from -3 to 3
$x= \pm 3$

Next examine a few "things" to draw graphics:
$y=2 x^{2}+1$
$2 x^{2}+1=0$
$x^{2}=-\frac{1}{2}$
$y=2 x^{2}+1$
$y^{`}=4 x$
$4 \mathrm{x}=0$
$\mathbf{x}=\mathbf{0}$
$\mathbf{y}=1$
$(0,1)$ is minimum

$\mathrm{A}=\int_{-3}^{3}\left[\left(x^{2}+10\right)-\left(2 x^{2}+1\right)\right] d x$
Important: Since the graph is symmetrical in relation to the \mathbf{y}-line, it is easier for us to calculate the area from 0 to 3 and to multiply that with $2 \ldots$

$$
\mathrm{A}=2 \int_{0}^{3}\left[\left(x^{2}+10\right)-\left(2 x^{2}+1\right)\right] d x=2 \int_{0}^{3}\left(-x^{2}+9\right) d x=\left.2\left(-\frac{x^{3}}{3}+9 x\right)\right|_{0} ^{3}=2 * 18=36
$$

3. Determine the area limited with $y^{2}+y+x=6$ and y - line.

Solution:

In this task is smarter to express x, and to calculate the required area "by y "...
$y^{2}+y+x=6$
$x=-y^{2}-y+6 \longrightarrow-y^{2}-y+6=0 \longrightarrow \mathrm{y}_{1,2}=\frac{1 \pm 5}{-2} \longrightarrow \mathbf{y}_{\mathbf{1}}=\mathbf{- 3}, \mathbf{y}_{\mathbf{2}}=\mathbf{2}$
$x^{`}=-2 y-1 ; \quad$ So: $\quad x^{`}=0 \quad$ for $\quad-2 y-1=0 \quad$ then is $y=-\frac{1}{2} \quad$ and $\quad x=6 \frac{1}{4}$

Point $\left(6 \frac{1}{4},-\frac{1}{2}\right)$ is maximum when we think "by $y^{\prime \prime}$

$\mathrm{A}=\int_{-3}^{2}\left(-y^{2}-y+6\right) d y=\left.\left(-\frac{y^{3}}{3}-\frac{y^{2}}{2}+6 y\right)\right|_{-3} ^{2}=\frac{125}{6}$
4. Calculate the area of the figure, which is limited with lines $y=e^{x}, y=e^{-x}$ and $x=2$

Solution:

Here we have a graphics of basic functions. If you are not familiar with them, create a table of values...(choose values for x and then find y).

$\mathrm{A}=\int_{0}^{2}\left(e^{x}-e^{-x}\right) d x=\left.\left(e^{x}+e^{-x}\right)\right|_{0} ^{2}=\left(e^{2}+e^{-2}\right)-\left(e^{0}+e^{-0}\right)=e^{2}+e^{-2}-2$
5. Calculate volume of body which make parable $y=4 x-x^{2}$ when she rotates around x-line.

Solution:

$y=4 x-x^{2}$
$4 x-x^{2}=0 \longrightarrow x(4-x)=0 \Rightarrow x=0 \vee x=4$
$y^{`}=4-2 x \longrightarrow 4-2 x=0 \longrightarrow \mathrm{x}=2 \longrightarrow \mathrm{y}=4$

Borders are 0 and 4
$\mathrm{V}=\pi \int_{a}^{b} y^{2} d x$
$\mathrm{V}=\pi \int_{0}^{4}\left(4 x-x^{2}\right)^{2} d x=\pi \int_{0}^{4}\left(16 x^{2}-8 x^{3}+x^{4}\right) d x$

$$
=\left.\pi\left(16 \frac{x^{3}}{3}-8 \frac{x^{4}}{4}+\frac{x^{5}}{5}\right)\right|_{0} ^{4}
$$

$$
=\pi\left(16 \frac{64}{3}-2 \circ 256+\frac{256}{5}\right)=\pi \frac{512}{15}=\frac{512 \pi}{15}
$$

Volume is $\frac{512 \pi}{15}$
6. Find volume of body which caused circle $x^{2}+(y-b)^{2}=r^{2}$ rotating around $\mathbf{x}-$ line ($\mathbf{b}>\mathbf{r}$)

Solution:

From the analytical geometry we know that the equation of circle is $(x-p)^{2}+(y-q)^{2}=r^{2}$ where are \mathbf{p} and \mathbf{q} center coordinates, and \mathbf{r} - radius of circle.

$$
x^{2}+(y-b)^{2}=r^{2} \longrightarrow \mathrm{p}=0 \text { and } \mathrm{q}=\mathrm{b}, \mathrm{so}:
$$

$x^{2}+(y-b)^{2}=r^{2} \quad$ here we have to expres y
$(y-b)^{2}=r^{2}-x^{2}$
$y-b= \pm \sqrt{\left(r^{2}-x^{2}\right)}$
$y=b \pm \sqrt{\left(r^{2}-x^{2}\right)}$ Here we get two circles: the upper $y=b+\sqrt{\left(r^{2}-x^{2}\right)}$ and lower $y=b-\sqrt{\left(r^{2}-x^{2}\right)}$

Rotation of this circle will give us the body, which is known as TORUS.

$$
\mathrm{V}=\pi \int_{a}^{b}\left(y_{1}^{2}-y_{2}^{2}\right) d x
$$

Find first value $y_{1}^{2}-y_{2}^{2}$

$$
\begin{aligned}
y_{1}^{2}-y_{2}^{2} & =\left(b+\sqrt{\left(r^{2}-x^{2}\right)}\right)^{2}-\left(b-\sqrt{\left(r^{2}-x^{2}\right)}\right)^{2} \\
& =\left(b^{2}+2 b \sqrt{r^{2}-x^{2}}+r^{2}\right)-\left(b^{2}-2 b \sqrt{r^{2}-x^{2}}+r^{2}\right) \\
& =b^{2}+2 b \sqrt{r^{2}-x^{2}}+r^{2}-b^{2}+2 b \sqrt{r^{2}-x^{2}}-r^{2} \\
& =4 b \sqrt{r^{2}-x^{2}}
\end{aligned}
$$

First, we will solve integral:

$$
\begin{aligned}
\int \sqrt{r^{2}-x^{2}} d x=\left|\begin{array}{c}
x=r \sin t \\
d x=r \cos t d t
\end{array}\right| & =\int \sqrt{\left(r^{2}-r^{2} \sin ^{2} t\right)} r \cos t d t \\
& =\int \sqrt{r^{2}\left(1-\sin ^{2} t\right)} r \cos t d t \\
& =\int r \sqrt{\left(1-\sin ^{2} t\right)} r \cos t d t \\
& \text { we know that } \mathbf{1}-\sin ^{2} \mathbf{t}=\cos ^{2} \mathbf{t} \\
& =\int r^{2} \cos t \cos t d t \\
& =\int r^{2} \cos ^{2} t d t
\end{aligned}
$$

r^{2} is constant and will go in front of integral and we will use formula: $\cos ^{2} t=\frac{1+\cos 2 t}{2}$; then $\frac{1}{2}$ will , also as a constant, go in front of integral...So:

$$
\begin{aligned}
& =\frac{r^{2}}{2} \int(1+\cos 2 t) d t \\
& =\frac{r^{2}}{2}\left(t+\frac{1}{2} \sin 2 t\right)
\end{aligned}
$$

What happens to the borders of this integral?
Replacement was : $\left.\begin{gathered}x=r \sin t \\ d x=r \cos t d t\end{gathered} \right\rvert\,$, for $\mathrm{x}=-\mathrm{r} \quad$ is $-\mathrm{r}=\mathrm{r} \sin \mathrm{t}$, then $\sin \mathrm{t}=-1 \longrightarrow \mathrm{t}=-\frac{\pi}{2}$

$$
\text { for } x=r \quad \text { is } \quad r=r \sin t, \quad \sin t=1 \quad \longrightarrow \quad t=\frac{\pi}{2}
$$

New boundaries are $-\frac{\pi}{2}$ and $\frac{\pi}{2}$

Let's go back to the integral:

$$
\begin{aligned}
\mathrm{V}=\pi \int_{a}^{b}\left(y_{1}^{2}-y_{2}^{2}\right) d x & \left.=\pi 4 b \frac{r^{2}}{2}\left(t+\frac{1}{2} \sin 2 t\right) \right\rvert\, \begin{array}{l}
\frac{\pi}{2} \\
\frac{-\pi}{2}
\end{array} \\
& =2 \pi b r^{2}\left[\left(\frac{\pi}{2}+\frac{1}{2} \sin 2 \frac{\pi}{2}\right)-\left(-\frac{\pi}{2}+\frac{1}{2} \sin \left(-2 \frac{\pi}{2}\right)\right)\right] \\
& =2 \pi b r^{2} \pi \\
& =2 b r^{2} \pi^{2}
\end{aligned}
$$

So, after much effort, the finally solution is $\mathrm{V}=2 b r^{2} \pi^{2}$
7. Calculate the length of the curve $y=\ln x$ from point $x=\sqrt{3}$ to point $x=\sqrt{8}$

Solution:

Here we do not need a picture!
Formula for calculating the length of the curve is: $\mathbf{L}=\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x$, if we doing "by \mathbf{x} " $y=\ln x$
$y=\frac{1}{x} \quad$ So:
$\int_{a}^{b} \sqrt{1+f^{\prime}(x)^{2}} d x=\int_{\sqrt{3}}^{\sqrt{8}} \sqrt{1+\left(\frac{1}{x}\right)^{2}} d x=\int_{\sqrt{3}}^{\sqrt{8}} \sqrt{1+\frac{1}{x^{2}}} d x=\int_{\sqrt{3}}^{\sqrt{8}} \sqrt{\frac{x^{2}+1}{x^{2}}} d x=\int_{\sqrt{3}}^{\sqrt{8}} \frac{\sqrt{x^{2}+1}}{x} d x=$ replacement $=$
$=\left|\begin{array}{c}x^{2}+1=t^{2} \\ 2 x d x=2 t d t \\ x d x=t d t \\ d x=\frac{t d t}{x}\end{array}\right| \longrightarrow\left|\begin{array}{c}x=\sqrt{3} \Rightarrow t=2 \\ x=\sqrt{8} \Rightarrow t=3\end{array}\right|$
$=\int_{2}^{3} \frac{t}{x} \frac{t d t}{x}=\int_{2}^{3} \frac{t^{2} d t}{x^{2}}=$ from the replacement is $\mathrm{x}^{2}=\mathrm{t}^{2}-1$,so:
$=\int_{2}^{3} \frac{t^{2} d t}{t^{2}-1} \quad[+\mathbf{1}$ and $-\mathbf{1}$ as a "trick" $]$
$=\int_{2}^{3} \frac{t^{2}-1+1}{t^{2}-1} d t=\int_{2}^{3}\left(1+\frac{1}{t^{2}-1}\right) d t=t+\left.\ln \sqrt{\frac{t-1}{t+1}}\right|_{2} ^{3}=\left(3+\ln \sqrt{\frac{3-1}{3+1}}\right)-\left(2+\ln \sqrt{\frac{2-1}{2+1}}\right)=$
$=1+\sqrt{\ln \frac{3}{2}}$

Solution is: $\quad \mathrm{L}=1+\sqrt{\ln \frac{3}{2}}$
8. Find area of body which make parable $y^{2}=4 x$ rotating around x - line on a segment $[0,3]$

Solution:

Formula for calculating this area is:
$\mathrm{A}=2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d x, \quad$ by $\mathrm{x} \quad \mathrm{x} \in[a, b]$

Here are boundaries 0 and 3 ,obviously.

$\mathbf{y}^{2}=\mathbf{4} \mathbf{x}$ from here is $y=2 \sqrt{x} \longrightarrow y^{\prime}=2 \frac{1}{2 \sqrt{x}}=\frac{1}{\sqrt{x}} \longrightarrow y^{\prime 2}=\frac{1}{x}$

$$
\begin{aligned}
& \mathrm{A}=2 \pi \int_{a}^{b} f(x) \sqrt{1+f^{\prime}(x)^{2}} d=2 \pi \int_{0}^{3} 2 \sqrt{x} \sqrt{1+\frac{1}{x}} d x \\
&=2 \pi \int_{0}^{3} 2 \sqrt{x} \frac{\sqrt{x+1}}{\sqrt{x}} d x \\
&=4 \pi \int_{0}^{3} \sqrt{x+1} d x \quad \text { replacement } \\
&=\left|\begin{array}{l}
x+1=t^{2} \\
d x=2 t d t
\end{array}\right| \\
& \int \begin{array}{l}
2 t^{2} d t=2 \frac{t^{3}}{3}=\frac{2}{3} \sqrt{(x+1)^{3}} \\
\end{array} \\
& \left.=4 \pi \frac{2}{3} \sqrt{(x+1)^{3}} \right\rvert\, 3 \\
&=\frac{8 \pi}{3}(8-1)=\frac{56 \pi}{3} \\
& 0
\end{aligned}
$$

Solution is : $\mathrm{A}=\frac{56 \pi}{3}$
9. Cycloid C is defined with parametric equations: $x=a(t-\sin t)$ and $\quad y=a(1-\cos t)$

Calculate:

a) area limited with one arch of cycloid
b) length of one arch
c) volume of body which caused one arch rotating around \mathbf{x} - line

Solution:

a) The first arch of cycloid is on interval $[0,2 a \pi]$

$\mathrm{A}=\int_{a}^{b} y d x$

$$
\left|\begin{array}{rlr}
y=0 & \Rightarrow a(1-\cos t) & =0 \\
y=2 a \pi & \Rightarrow a(1-\cos t)=2 a \pi & t=2 \pi
\end{array}\right|
$$

$x=a(t-\sin t) \longrightarrow d x=a(1-\cos t) d t$
$\mathrm{A}=\int_{a}^{b} y d x=\int_{0}^{2 \pi} a(1-\cos t) a(1-\cos t) d t=a^{2} \int_{0}^{2 \pi}(1-\cos t)^{2} d t$
$\int(1-\cos t)^{2} d t=\int\left(1-2 \cos t+\cos ^{2} t\right) d t=\int 1 d t-2 \int \cos t d t+\int \frac{1+\cos 2 t}{2} d t$

$$
=t-2 \sin t+\frac{1}{2}\left(t+\frac{1}{2} \sin 2 t\right)
$$

$$
\begin{aligned}
& =t-2 \sin t+\frac{1}{2} t+\frac{1}{4} \sin 2 t \\
& =\frac{3}{2} t-2 \sin t+\frac{1}{4} \sin 2 t
\end{aligned}
$$

$$
\mathrm{A}=a^{2} \int_{0}^{2 \pi}(1-\cos t)^{2} d t=\left.a^{2}\left(\frac{3}{2} t-2 \sin t+\frac{1}{4} \sin 2 t\right)\right|_{0} ^{2 \pi}=\mathbf{3} a^{2} \pi
$$

$$
\text { So: } \quad \mathrm{A}=\mathbf{3} a^{2} \pi
$$

b)

$$
\begin{aligned}
& \text { L= } \int_{\alpha}^{\beta} \sqrt{x^{\prime 2}(t)+y^{\prime 2}(t)} d t \\
& x=a(t-\sin t) \longrightarrow y^{\prime}=a(1-\cos t) \\
& y=a(1-\cos t) \longrightarrow a \sin t
\end{aligned}
$$

$$
\begin{aligned}
x^{\prime 2}+y^{\prime 2}=[a(1-\cos t)]^{2}+[a \sin t]^{2} & =a^{2}\left(1-2 \cos t+\cos ^{2} t\right)+a^{2} \sin ^{2} t \\
& =a^{2}\left(1-2 \cos t+\cos ^{2} t+\sin ^{2} t\right) \\
& =a^{2}(2-2 \cos t) \\
& =2 a^{2}(1-\cos t) \\
& =2 a^{2} 2 \sin ^{2} \frac{t}{2} \\
& =4 a^{2} \sin ^{2} \frac{t}{2}
\end{aligned}
$$

$$
\int_{\alpha}^{\beta} \sqrt{x^{\prime 2}(t)+y^{\prime 2}(t)} d t=\int_{0}^{2 \pi} \sqrt{4 a^{2} \sin ^{2} \frac{t}{2}} d t=\int_{0}^{2 \pi} 2 a \sin \frac{t}{2} d t=2 a \int_{0}^{2 \pi} \sin \frac{t}{2} d t=-\left.4 a \cos \frac{t}{2}\right|_{0} ^{2 \pi}=8 a
$$

$$
\mathrm{L}=8 \mathrm{a}
$$

c)

$\mathrm{V}=\pi \int_{0}^{2 \pi} y^{2} d x=\pi \int_{0}^{2 \pi}[a(1-\cos t)]^{2} a(1-\cos t) d t$
$=\pi \int_{0}^{2 \pi} a^{3}(1-\cos t)^{3} d t$
$=a^{3} \pi \int_{0}^{2 \pi}(1-\cos t)^{3} d t \quad$ here we must use $(\mathrm{a}-\mathrm{b})^{3}$
$=a^{3} \pi \int_{0}^{2 \pi}\left(1-3 \cos t+3 \cos ^{2} t-\cos ^{3} t\right) d t$
$\int \cos ^{2} t=\int \frac{1+\cos 2 t}{2} d t=\frac{1}{2} \int(1+\cos 2 t) d t=\frac{1}{2}\left(t+\frac{1}{2} \sin 2 t\right)=\frac{1}{2} t+\frac{1}{4} \sin 2 t$
$\int \cos ^{3} t d t=\int \cos t \cos ^{2} t d t=\int \cos t\left(1-\sin ^{2} t\right)=\int \cos t d t-\int \cos t \sin ^{2} t d t=\left|\begin{array}{c}\sin t=z \\ \cos t d t=d z\end{array}\right|=\sin t-\int z^{2} d z=$ $\sin t-\frac{z^{3}}{3}=\sin t-\frac{\sin ^{3} t}{3}$
$\mathbf{V}=\left.a^{3} \pi\left[t-3 \sin t+3\left(\frac{1}{2} t+\frac{1}{4} \sin 2 t\right)-\left(\sin t-\frac{\sin ^{3} t}{3}\right)\right]\right|_{0} ^{2 \pi}=$ simplify $\ldots=5 a^{3} \pi^{2}$

$$
\mathbf{V}=5 a^{3} \pi^{2}
$$

