
Application of integrals  (examples) 

 

 

1. Calculate the area of the figure limited with curve xxy 22 +−=  and line  y = 0. 

 

Solution: 

 

 

In these tasks we  must first draw the picture and find the point  of  intersection   because they give us borders of  

 

integral. 

 

i) xxy 22 +−=                       022 =+− xx                                x = 0     and    x = 2 

 

ii)   y`= -2x +2,  y` = 0     for   –2x+2 = 0                 x = 1               y = - 1
2
+2 = 1, the point (1,1) is maximum. 
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We need to find   this  area , and it is clear that the limits of integrals go from 0 to 2, so: 
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2. Calculate the area of the figure, which is limited with  lines:  12 2 += xy    and     102 += xy         

 

 

Solution: 
 

 

Points  of  intersection of the two curves, we get  as  the solution of  system equations( that will give us the border   

 

of integral): 

 

 

 

  12 2 += xy  

  102 += xy  
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So integral "goes" from -3 to 3 

 

 

Next examine a few “things” to draw graphics: 

 

12 2 += xy                                                                       102 += xy  

 

012 2 =+x                                                                       0102 =+x          
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12 −=x                                                                          102 −=x  

 

 

12 2 += xy                                                                        102 += xy  

 

y` = 4x                                                                              y`= 2x   

 

4x = 0                                                                                2x = 0    

                                                                          

x = 0                                                                                    x = 0        

    

y= 1                                                                                    y= 10   

 

 

(0,1) is minimum                                                                (0,10) is  minimum 
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Important: Since the graph is symmetrical in relation to the y-line,  it  is easier for us to calculate  

 

the area from 0 to 3 and to multiply  that with 2 … 
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3. Determine the area limited with 62 =++ xyy  and y – line. 

 

 

Solution: 

 

 

 

In this task is smarter to express x, and to calculate the required area "by y"… 

 

 

62 =++ xyy  

 

62 +−−= yyx                       062 =+−− yy                      y1,2=
2
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x` = - 2y – 1;           So:   x` = 0      for    - 2y –1 = 0      then is   y = 
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4. Calculate the area of the figure, which is limited  with lines  y = e
x
  ,  y = e

-x
    and    x = 2 

 

 

Solution: 
 

Here we have  a graphics  of basic  functions. If you are not familiar with them, create a table of  

 

values…( choose values for x and then find  y).  
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5.  Calculate  volume  of  body    which  make  parable  24 xxy −=   when she rotates  around  x – line. 

 

Solution: 
 

24 xxy −=  

04 2 =− xx                     400)4( =∨=⇒=− xxxx  

 

y` = 4-2x                 4-2x = 0                    x = 2               y = 4 
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Borders are 0 and  4 
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Volume is   
15

512π
 

 

 

6. Find  volume of body which caused circle 222 )( rbyx =−+  rotating  around  x – line  (b>r) 

 

Solution: 
 

From the analytical geometry we  know that the equation  of  circle is 222 )()( rqypx =−+−  where  are p and  q  

 

center coordinates, and  r- radius  of circle. 

 
222 )( rbyx =−+                           p = 0  and   q =b, so: 
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222 )( rbyx =−+       here we  have to  expres  y 

 
222)( xrby −=−  

 

)( 22 xrby −±=−  

 

)( 22 xrby −±=  Here we get two circles: the upper )( 22 xrby −+=  and lower )( 22 xrby −−=  
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Rotation of this circle will give us the body, which is known as TORUS. 
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It is clear that boundaries are – r and  r 

 

 



First, we will solve integral: 
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What happens to the borders of this integral? 
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Let's go back to the integral: 
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So, after much effort, the finally solution is  V = 222 πbr  

 

 



7. Calculate the length of the curve    y =  lnx   from  point   x = 3    to point   x = 8  

 

 

Solution: 
 

Here we do not need a picture! 

 

Formula for calculating the length of the curve is: L= dxxf

b
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y = ln x     
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Solution is:    L = 
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8.  Find  area of body which make parable    y
2 
= 4x   rotating  around  x – line  on a segment [0,3] 

 

 

Solution: 
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Formula for calculating  this area is: 
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Here are boundaries 0 and 3 ,obviously. 
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9. Cycloid C is defined  with  parametric equations:    )sin( ttax −=      and       )cos1( tay −=       

 

Calculate:  
 

a)  area limited with  one arch of cycloid  

b)   length of one arch 

c)  volume of body which caused one arch rotating  around  x – line 
 

 

 

Solution: 
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a) The first arch of cycloid is on interval  [0, πa2 ] 
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So:                                    A =3 π2a  
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                                                                         L = 8a 
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